
Was macht eine Zener-Diode¹?

Eine Z-Diode ist eine Diode, die in Sperrrichtung bis zur Durchbruchspannung U_Z betrieben wird. Bis U_Z sperrt sie den Strom, darüber hält sie Spannung U_Z konstant.

Z-Dioden werden zur Spannungsstabilisierung oder als Schutz vor Überspannung eingesetzt.

Ähnliche Beispiele

Wenn das Wasser nichts kostet, kann man den Wasserstand in einem Brunnen durch einen Überlauf begrenzen.

Eine Z-Diode wirkt wie der Überlauf.

Bis der gewünschte Wasserstand (die Durchbruchspannung U_z) erreicht ist, sperrt der Überlauf (die Z-Diode), danach lässt er (sie) das überschüssige Wasser (den Strom I) ablaufen und hält so den Wasserstand (die Spannung U_z) konstant.

Das funktioniert natürlich nur, wenn der Zulauf nicht zu stark ist, deshalb benötigen Z-Dioden einen Vorwiderstand. Das Beispiel verdeutlicht auch einen Nachteil von Zener-Schaltungen: Sie verschwenden Strom.

Ein Beispiel für Überspannungsschutz ist der Überlauf bei einer Badewanne. Er liegt über dem normalen Wasserstand und dient nur der Absicherung.

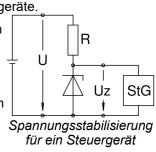
Man kann eine Z-Diode auch mit einem Überdruckventil vergleichen.

Wie funktioniert eine Z-Diode?

Die Sperrwirkung von Dioden beruht darauf, dass sich Elektronen in einem Halbleiter quasi verklemmen und dann mit ihrer Ladung die leitende Schicht blockieren.

Wenn die Spannung, die von außen angelegt wird, groß genug ist, werden wieder Elektronen aus dem Grundmaterial gerissen, die Strom leiten können. Deshalb leiten Dioden auch in Sperrrichtung, wenn die Durchbruchspannung überschritten ist. Der Strom schwillt dann sehr schnell an, sodass sich keine weitere Spannung aufbauen kann.

"Normale" Dioden können durch den großen Durchbruchsstrom Schaden nehmen, aber Z-Dioden sind dafür ausgelegt.


Details siehe Arbeitsblatt "Halbleiter"

Anwendungen für Kfz

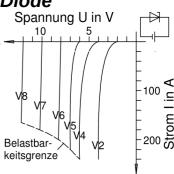
Spannungsstabilisierung

z.B. für Autoradio oder Steuergeräte.

Ein Steuergerät (StG) wird von einer Batterie mit U = 12V versorgt, benötigt aber selbst eine konstante Spannung Uz, z.B. 5 V. Dafür sorgt die parallel geschaltete Z-Diode, indem sie ab ihrer Durchbruchspannung 5 V alle überschüssigen Elektronen am Steuergerät vorbei strömen lässt.

Der Vorwiderstand R begrenzt den Strom, damit die Z-Diode nicht durchbrennt.

Überspannungsschutz


Für einen Überspannungsschutz wird eine Z-Diode verwendet, deren Durchbruchspannung über der normalen Betriebsspannung liegt. Sie tritt wie ein Überdruckventil erst in Aktion, wenn ein Bauteil durch erhöhte Spannung gefährdet wird.

Schaltzeichen und Bezeichnungen

Zener-Diode

Kennlinie einer Z-Diode

Eine Z-Diode ist eine Diode, die in Sperrrichtung bis zur Durchbruchspannung betrieben werden kann. Weil sich beim einer Kennlinie für Dioden der Sperrbereich links unten befindet, wählt man bei Z-Dioden gewöhnlich die gleiche Ansicht.

Dargestellt sind die Kennlinien mehrerer Z-Dioden, z.B. V4 oder V6. Man erkennt, dass die Z-Diode V6 bis zur Durchbruchspannung $U_Z = 8V$ keinen Strom durchlässt. Über der Durchbruchspannung steigt der Strom durch die Z-Diode stark an - wie bei einem Überlauf.

Mehr als 200 mA verträgt diese Z-Diode allerdings nicht.